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Pr«fac« 

I first became aware of residue numbers and their potential 

while attending the thesis presentations of class GE 62.  The 

work done by Capt. Arthur J. Altenburg of that class aroused in 

me considerable interest in this unique number system.  Thus, 

when the Computer Section, Bionics and Computer Branch, Electronic 

Technology Laboratory, Aeronautical Systems Division, suggested 

to my class the subject of analog-to-residue number conversion 

as a possible thesis topic I was immediately enthusiastic. 

As originally conceived, my thesis project was simply one 

of adaption.  I had felt that a suitable result would be obtained 

if standard analog-to-digital conversion techniques were modified 

so as to be applicable to residue numbers.  With this goal, 1 

began to study present day conversion methods.  During a discus- 

sion of some results of my study, Mr. Dewey E. Brewer, the ASD 

sponsor for my thesis, suggested the possibility of using vernier 

devices.  To determine the feasibility of this idea, I constructed 

a simple model.  This model showed that a definite relationship 

exists between residue numbers and the coding system used on a 

vernier device.  Because of this discovery, I abandoned my original 

idea and changed my thesis project to an investigation of the rela- 

tionship between vernier devices and residue numbers.  This paper 

gives the results of that investigation. 

I want to emphasise that practical application is not the 

ii 
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primary Intention of this paper.  The main excuse for its exis- 

tence (besides the obvious one) is the possibility that it might 

provide some slight additional insight into the properties of 

residue numbers.  However, I could not help but visualize certain 

applications.  Some of the more reasonable speculations are in- 

cluded in the recommendations of Chapter VI. 

The work presented in this paper Is to the best of my know- 

ledge my own.  As a result, any errors that appear must of neces- 

sity be brought to my doorstep. 

At this time I wish to add a few personal notes.  First, I 

wish to acknowledge my indebtedness to the United States Air Force 

for affording me the opportunity of continuing my education, and 

to the Air Force Institute of Technology for providing me with the 

means of taking advantage of that opportunity.  Next, I want to 

express my appreciation to Mr. Brewer, who so kindly sponsored my 

work; to Capt. James E. HcCormick, my Faculty Thesis Advisor, whose 

expressed confidence in my work gave me the extra incentive needed 

to overcome the bad moments that occur in a work of this nature; 

and, to Capt. Frank M. Brown, who as a teacher and as a friend 

provided invaluable guidance.  To these people I offer my most 

heartfelt thanks. 

Finally, I must express my indebtedness to my wife.  Her 

constant encouragement and cooperation made this work possible. 

Not least among the many things she did for me was the typing 

of the manuscript. 

Richard E. Evans 
iii 
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THE VERNIER DEVICE 

AND 

RESIDUE NUMBER SYSTEMS 

I.  Introduction 

It wmm  in 1955 that Americans first became aware of the 

work being done by two Russians, M. Valach and A. Svoboda, on 

residue number systems.  Their work, which shows the possibi» 

ities of the application of residue numbers and the associated 

arithmetic to computing machinery, has stimulated considerable 

activity in this country.  The culmination of this activity 

will be the completion at the end of this year of an experi- 

mental computer based on the residue number concept. 

The property of residue numbers that has generated all 

this interest has to do with the carry operation in arithmetic. 

In present day computer coding systems, the necessity of hand- 

ling the carry results in limiting the speed of operation. 

Residue number systems offer a solution to this problem because 

the notion of carry is not involved in the algorithms for addi- 

tion and multiplication.  This makes possible the construction 

of economical arithmetic circuits capable of very high speed 

operation.  However, before residue number systems can be 

successfully applied to general purpose machines, efficient 

means must be derived to overcome several difficulties. 
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These difficulties include:  the deternination of relative 

Magnitude, the deteneination of algebraic sign, round-off, 

and division (Ref 1: Chap* III, p. 3).  As a result of these 

and other problems, there is still a dsfinite need for further 

theoretical development of the properties of residue number 

systems.  This paper is sn attempt to contribute in a small 

way to this need. 

The purpose of this paper ia to investigste the proper- 

ties of residue number systems snd of vernier devices.  The 

intention of this investigation is to show that theae seemingly 

unrelated subjects are, in fact, very closely related.  To make 

this relationship manifest, mathematical expressions are developed 

which show that given certain defined parameters, a vernier 

device may be constructed so that its scales provide readings 

in a given residue number system - the readings being the 

residue number representation of the decimal distance measured 

by the device. 

To accomplish the above purpose, this paper is basically 

separated into three parts.  In the first part (Chapter II), 

a theory of conventional vernier devices is developed.  This 

theory is not specifically applicable to the use of vernier 

devices with residue number systems.  However, its development 

is necessary in order to provide a starting place for the 

development of a theory that dees apply. 
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The second part of this paper (Chapters III, IV, and V) 

is concerned with the development of the vernier device, residus 

number relationships.  Chapter III presents a brief and united 

introduction to the concept of residue numbers.  The introduc- 

tion is intended only to prepare the reader for the subsequent 

development in Chapters IV and V.  Chapter IV is the heart of 

this paper.  It presents the theoretical development for the use 

of residue numbers with a basic two-scale vernier device.  The 

results of this development are the sufficient conditions for the 

design and the requirements for construction of the basic two-scale 

device.  The device so designed and constructed is referred to as 

a "residue vernier".  Subsequently, (Chapter V), the theory of the 

two-scale device is extended and generalised so that it applies to 

the more complex multi-scale devices.  This lead» to the general- 

ized sufficient conditions and requirements for the design and 

construction of residue verniers. 

The third and final part of this paper (Chapter VI and VII) 

presents s summary of the pertinent results of the investigstion 

and gives recommendations for further work in this area. 
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II* ConvntloiMiX Vernier« 

The vernier devie« was first described by its inventor, 

Piere Vernier, in 1631* As conceived by him, the device pro- 

vides s Method for increasing the accuracy with which scales 

nay be read. Thla chapter will discuss Vernier's device fro* 

the standpoint of its conventional use. A later chapter will 

introduce a new and different mode of application, the use of 

vernier devices with residue number systems. 

The discussion in this chapter will be in two sections. 

The first section will briefly describe conventions! vernier 

devices and will give a fsw simple illustrations of their use. 

This section is primarily intended to bo a review that will 

refamiliarise the reader with the operation of conventional 

verniers. Though such dsvicss are not the direct concern of 

this paper, their review should enable the reader to better 

follow the subsequent theorstical devolopmont. The second 

section of this chapter will consist of the author's develop- 

meat of the theory of operation of conventional vernier devices. 
V „ "-^v' •  ■■■•, '••■■;■.,= 

This development «ill be general in nature, and will not be 

specifically applicable to the use of verniers with residue 

number systems* However, the development of this theory is 
'  -/.^ ^v 

necessary in order to provide the insight required to associate 
Kilt' 

vernier devices with residue anmhors* 

• ''bS^-*---'-- " 
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Convnt Jona 1 VTIIIT Dmvicmm 

Conventional vernier devices consist of an auxiliary 

(vernier) scale sliding in contact with the scale to be read 

(main scale).  The vernier scale is divided into N  intervals 

which occupy the same space as  N - 1  intervals on the 

main scale.  Each interval of the vernier scale will then 

occupy  1 ~ „' '  intervals of the main scale.  When the 
v 

relation N ♦ 1  is used, it is necessary for the vernier 
v 

and main scales to read in opposite directions.  This type of 

device is known as a retrograde or reverse vernier.  When the 

relation  N  - 1   is used both scales read in the same direc- 

tion, and the device is known as a direct vernier. 

Linear Verniers.  Scales used to provide linear measure- 

ments are generally designed to give readings in decimal form. 

To obtain decimal readings the vernier scale is divided into 

ten intervals.  The combined length of these ten intervals is 

made equal to the length of either nine or eleven intervals on 

the main scale depending on the type of vernier desired.  Figure 

1 illustrates both types of linear verniers. 

Angular Verniers.  Scales used to measure angles may be 

designed to read decimal parts of degrees by using the same 

interval relationships as described for linear scales.  Angular 

scales designed to read in minutes or seconds of arc, however. 
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I Vernier Scale 
O     i£    349*78«    10 
j     ■      I.     I.    I.   I   .  I    .1      I      I r-rr i  i  i 

Main Seal* 

(a)   Direct Vernier 

I     I     I 

| Vernier Scale | 
10     9876543      2lO 

I   I . I   I   I. I  I I   I   I   I   I  I   I   I   I i   r 
Hain Scale 

(b) Retrograde Vernier 

Fig. 1 

Linear Verniers 



QE/m/*Z~7 

require a different reletionahip. Also« sine« it aajr IMI desir- 

able to aeaaure anglea in either direction, the verniers ere 

usually double (i.e.« a single vernier is placed en each side 

of the fiducial« one of which is to be used in readies angles 

to the right« and the other in rending angles te the left). 

Figure 2(a) illustrates a typical direct angular vernier used 

to read to one ninute of arc* This deviee is constructed by 

dividing the aain scale into degrees and half-degrees. The 

vernier scale is then nade te provide one ainute readings by 

taking a length equal to 29 of the half-degree intervals and 

subdividing It into 30 equal parts. 

For SOMO angular verniers the length of the scale Mutes 

it impracticable to uae a double vernier.  If it is still 

desirable to read angles in either.direction« s single vernier 

with two rows of numbers may be uaed as shown in Fig» 2(b). 

It is evident that if angles are to be read clockwise the right 

fiducial should be used; whereas, anglea to be rend counter- 

clockwise require the use of the left fiducial. Te construct 

this device the main scsle is divided into 20* spaces.  The.  n 

vernier scale is then made to provide 20N readings by taking <° 

a length equal to 59 of the 20* spaces and subdividing it into 

60 equal parts. 
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(a)  Doubl« Vernier Reading To 1 

(b)  Single Vernier Rending to 20" 

(c) Folded Vernier Reading to 1* 

Hg. 2 

Direct Angular Verniera 

8 
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Th« ineonvcnienc« of two fiduclala »ay bo ovcrcoaie by us- 

ing the middle lino a* tho fiducial and "foliding" the scale aa 

shown in Fig. 2(c)*  This NfoldodM vernier is road like an 

ordinary vernier except that if coincidence is not reached by 

passing along tho vernier in the direction in which the sain 

acale ia numbered, it is necessary to go to the other end of 

the vernier and continue ia the sane direction, toward the 

center, until coincidence ia found. The deaign relation for 

this device is tho saao aa that used for the vernier illustrated 

in Fig. 2(a). 

Theory of Conventional Verniers 

Definitions and Conditions.  As previously Mentioned, the 

following dovelopaent of vernier device theory is general in 

nature, and is not directed toward the ultimate uae of vernier 

devices with residue number systems.  However, it does lay down 

tho necessary groundwork for the development of that use. 

A conventional vernier device is normally thought of as 

conaisting of two scales, a main scale and a vernier scale. 

However, for the following development it is neceaaary to 

consider a vernier device aa made-up of three scales:  a primary 

scale consisting of the primary divisions of the main scale, a 

secondary scale consisting of the subdivisions of the primary 

scale, and a vernier scale.  Also, for this development it will 



b« convenient to us« the length of m  single vernier scale aa 

a reference. For thla purpoae, thla length la defined aa a 

"vernier aeale cycle" (e.g., the double vernier acale in Fig. 

2(a) la a two-cycle acale). 

With the above provialona in alnd, the following ayabola 

are definedt 

N  s niudier of intervale on the secondary acale per 

primary acale diviaion 

N  « nuaber of intervale on the aecondary acale per 

vernier ecale cycle 

N  m  mmber of intervale on the vernier acale per 

vernier acale cycle 

L  ■ length of one prinary acale diviaion 
P 

L  s length of one aecondary acale interval 

L  *  length of one vernier acale interval 

From  practical considerations it nay be eeen that N , N  . ap  av 

and N muat be integere.  Aleo« in order to prevent any 

ambiguity of coincidence between the aecondary and vernier 

acalea« it ia neceaaary that N  and N be relatively prime. 

Diatance Equation. When there ia coincidence between 

the eeeondary and vernier scales, as shown in Pig. 3, then 

s distance equation may be written auch that 

10 
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Secondary Seal« 

Primary Scale 

Fiducial 

Vernier Scale 

Fig, 3 

Vernier Device Parameter« 

Per Dlataaee I^Matiea 

11 
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^P " PLP * *L« * i,L« " nLv (1) 

where  xL = distance between primary scale sere and fiducial 

pL s largest integral multiple of L between primary 

scale eero and fiducial 

sL a largest integral miltiple of L between last 
B B 

primary division and fiducial 

mL m  distance between last secondary division and 

coincidence of scales 

nL s distance between coincidence of scales and ficucial 

It should be noted that the set pv s, m, and n is a unique func- 

tion of x, and with coincidence it is a set of integers* 

From the definitions in the preceding subsection it may be 

seen that 

L 
Ls • -r- (a) 

•p 

N  L     N  L 
,T ■       SV D 
i " N N v       »P v 

• ¥       ST S       SV P ._v and Lv » —j;  . N / (3) 

The substitution of Eqs (2) and (3) into Eq (1) gives 

12 
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p«-p 

if 

»< T*'^T- 

B  

■ 

 4- 

 K 

xL 

Fig.   4 

Conventional Linear Varniar 
(N  > 10, N„ « 10) ap    ' v 

13 
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xLp « PLp * ' (-N£-) * ***  " nNsv) TV" (4) 
^    K       «p «P v 

The «eaning of £q (4) mmy  be better understood by use of 

an example.  From Fig. 4 it may be seen that if the length L 

is one inch, then 

x (inches) s p (inches) ♦ s (tenths of an inch)       (5) 

•f v (hundredths of an inch) 

where p, s, and v are the respective readings of the primary, 

secondary, and vernier scales.  For the conventional linear 

vernier illustrated,   M   =10  and  N  * 10.   Substitution 

of these values and  L = 1 inch   into Kq (4) gives 

x (inches)■ p (inches) * m  (tenths of an inch)       (6) 

+ (mN - nN  ) (hundredths of an inch) 

Comparison of Eqs (5) and (6) shows that v, the reading of 

the vernier scale at coincidence, must be given by 

v . mN - nN (7) V     sv 

14 



Th« •ignifieane« of this laportant relationship will b« 

exaMined in detail in the next subsection.  For now it ia 

auffieiont to roslise that the uae of £q (7) allowa Eq (4) 

to be written as 

or 

a 
U 

♦   • 
V 

X N    N sp V 

a 
,,N.B"» ♦ sN r* v 

X 

%H» 

(8a) 

(8b) 

where pt a, and v are the acale readinga of the device* 

Equation (8) ia the baaic equation behind the operation 

of vernier devicea.  It ahowa why it ia poaaible, when uaing 

auch a device for neaaurenentt to take the readinga directly 

tnm the varioua acalea to obtain a numerical evaluation of 

the length (angle) being seaaured. Perhapa a better under- 

atanding of Eq (8) «ay be obtained by returning to the exaaple 

illuatrated in Fig. 4.  For thia device Eq (8) becoaea 

a    v      pi. IP2) ♦ a(10) ♦ v      (9) ♦ '   ♦  ■ ■ * A X   m     p ♦ •—— ♦ —r  a   r A 
10   10* 10* 

IS 
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and takes on the fanillar for* of the base 10 (decimal) nuaber 

eyeten. 

A relation indicated by Eq (8) ia worthwhile noting, al- 

though any development of it is beyond the scope of this paper. 

It may be seen from £q (8) that by appropriate choice of N 

and N the value of x may be obtained in any desired fixed or 

mixed radix number system. From the viewpoint of thie paper, 

however, the relation given by Eq (7) hae greater consequence. 

Vernier Scale Coding. To examine the meaning of Eq (7) 

it is first necessary to write another distance equation.  Froa 

Fig. 3 it may be seen that 

yL mL • nL (10) 

where yL  is defined aa the dietance from the last secondary 

division to the fiducial.  Alao, it may be seen that 

0 ^ y < 1 (11) 

Subetitution of Eqs (2) and (3) into Eq (10) gives 

mN - nN 
V sv y .  H  (12) 

16 
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Th« eoablnation of £qa  (11) and  (12)  raaulta in 

O < ^ - nNsv    ^    Nv (13) 

It will b« •••» later that th« difference  N>v - Nv 

i« a convenient paraaeter for verniers«  With this in mind, 

the expreasion mN - nN  «ay be rewritten as 

■Nv - nll-v • qNv - nN (14) 

where N ■ H^  - Nv (15) 

q • ■ - n (16) 

Thua,       0 ^ qNv - nN jj Nv (17) 

An exanination of the factora that fom the expression 

qN - nN  girea the following:  the factora N and N are 

constants when a apeeific vernier device ia under eonaidera- 

tion, the factor a ia the masber of intervale a given line on 

the vernier acale ia froa the fiducial, and the factor q ia an 

integer. Whoa N and N are given, the inequality of Eq (17) 

ahowa that the value of q ia a function of n.  Since q ia a 

function of n, it followa fro« Eqa (7) and (14) that v ia alao 

a function of n. Thua, vt the nuserical value given a parti- 

cular line on the vernier acalet ia directly related to n, the 

17 
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nuaber of interval« a given line on tho vernier scale is froi 

the fiducial.  Since v will take on a sequence of values Eqs 

(7) and (14) may be coabined and rewritten as 

K] • ><»)«*-»*} (18) 

where n s 0,1,2, ..., N   and  0 £ v £ N 

Because this sequence deternines the numerical coding of the 

vernier scale, \v f  will be referred to as the coding sequence. 
n ' 

The direct and retrograde vernier scales previously discussed 

are special cases of Eq (18) where \v   \    is a monotone sequence. 

The direct scale requires a sequence that is monotone increasing; 

the retrograde scale requires one that is monotone decreasing. 

In order for iv  1 to be monotone, it is necessary that 

'k+1 vk*l (19) 

The restriction of Eq (19) applied to Eq (18) gives 

Vk+1 -  \ '   [q(k+l) - q(k)] Nv - [(k+1) - k] N  C20) 

If r £ q(k+l) - q(k) (21) 

then Eq (18) becomes 

N s rN_ ♦ 1 

18 

(22) 
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Since q(n) i« an Integer it follows froa Eq (21) that r is an 

integer. Also, Eq (21) indicates that r «ay be a function of 

n. However, Eq (22) presented in a little different form 

-S-g-i (23) 

shows that r must be a constant for a given monotone sequential 

vernier.  It will be proven in the following subsection that r 

may have the values 

r « '1,0,1,2,3, ... (24) 

Thus, Eq (22) states that a vernier device with parameters 

such that N is equal to an integral multiple of N minus (plus) 

one will have a monotone sequence as a code. The minus sign 

in Eq (22) results in ^v \   being a monotone increasing se- 

quence (direct vernier), while the plus sign gives a monotone 

decreasing sequence (retrograde vernier).  Figures 5 and-6 

illustrate how the conventional vernier scales result from the 

above relations when  N a ♦ 1,   (r«0). 

When Eq (22) is not satisfied (v "l will be non«Hnonotone. 

An example of a vernier scale coded by a non-monotens sequence 

is illustrated in Fig. 7. Though the parametor r is defined 

1« 
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N         s   10                 N         a   9                          I 
■P                                         BV 

1           N         a   10                 N      .   -1 

n      | |   Nvq(li)-Nn V 
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q(n) 

0 !   10a(0)+0 0 0 

1 10a(l)+l 1 o      i 
2 10a(2)4-2 2 0         1 
3       1 !   10a(3)+3 3 0         1 

4       1 |   10a(4)+4 4 0 

1    5       1 10a(S)4.5 5 o       ! 

6 10a(6)+6 6 0 

7 10a(7)4.7 7 0 

8 10a(8)+8 8 0 

9 10a(9)+9 9 0 

10 | io«rtio^io 10 0       1 
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Direct  Vernier 
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1           N       « 10 
•P 

N       -  10 

N.v- 
N  « 

11         1 

1 . 

n NrqCiO-Nn V n q(n) 1 

1      0 1   I0a(0)-0 10 

I       1 1  10a(l)-l 9 

i      2 1  10a(2)-2 8 

3     | 1  10a(3)-3 7 

!     4    1 |  10a(4)-4 6 

1   -s ! 1  10a(5).5 5 

6     1 1  10a(6).6 4 

7     I 1  10a(7)-7 3 

8 10a(8).8 2 

9 1  10a(9)-9 1 

1    10    I 1  10a(10)-10 0 

1      — 

1   • «0 

i 

* 

4 _ 
i     s 

« _ 

U   IO 1 
C         1 

m     0I 

  

x » p • V P(10    )»«(10)-t-T 
10     io2 10 

Fig.   6 

■R*trograd* Vernier 
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j          Nep " 10 

1         Nv    = 10 

N sv 
N  s     - 

7                1 
3 

n 1 Nvq(B)-Nn vn q(n) 

!    o 10a(0)+O 0 0         1 
i j  10a(l)+3 3 0 

2 1   10a(2)+6 6 0         j 
3 [ 10a(3)+9 9 0        j 
4   ! 1  10a(4)+12 2 -1      1 

1      5     I 1  10a(5)^15 5 -1      1 
6     | 10a(6)+18 8 -1      1 
7 1  10a(7)+21 1 -2 

8 10a(8)+24 4 -2          1 
9 10a(9)+27 7 -2         | 

1   10    1 i  10a(10)^30 10 -2          | 

1    0 
1 

I, ._ 

& 

a _ 
1   4 - 

5 

1     6 
i      7 

, 
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8    .1 
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x  = p + JL + -2- _    P(10 )>«ClO)»v 
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Folded Vernier 
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for Monoton« ••quential vomiors only, it mmy  b« notod froa 

Fig. 7 that   q(k-fl) - q(k)   1« not • constant for the non- 

monotone sequential vernier.  Because of the lack of a better 

name  -  due, no doubt, to a lack of imagination - the author 

has chosen to refer to verniers coded by non-monotone sequences 

as "folded verniers". The reader is cautioned not to confuse 

the folded (non-monotone) vernier with the tulded angular 

vernier discussed earlier.  Because of the difficulty with 

interpolating non-coincident readings, folded verniers are 

of little practical value for use as conventional verniers 

designed to measure length (angle).  However, folded verniers 

are important when vernier devices are used with residue numbers. 

As a result, they will be examined in more detail in the follow- 

ing subsection. 

Vernier Families and the Folded Vernier.  From £q (11) it 

can be seen that the "least count" of a vernier (the smallest 
L 

division that can be read directly from a vernier) is   „ ?  * 
sp v 

Thus, for given values of N  and N , a family of vernier 

devices having the same least count may be constructed by 

assigning different values to N  .  A given vernier family 

will consist of two subgroups:  the monotone sequential verniers 

and the non-monotone sequential verniers.  Figures 5 and 6 are 

examples of the former, while Fig. 7 is an example of the latter. 
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Subgroups in any family share conmon characteristics and 

interconnecting relationships.  The vernier families are no 

exception.  The subsequent development will show that a given 

non-monotone sequential vernier is directly related to a mono* 

tone sequential vernier of the same family.  However, before 

beginning this development, it is first necessary to examine 

r of Eq (22) and prove Eq (24). 

From the inequality of Eq (17) it may be seen that 

-ga- £ q(n)  <  1 ♦ -g2- (25) 
v v 

If n takes on the values k and k+1, then 

V V 
(26) 

Jtigiil ^ q(k+1) s   1  + JiigliL. (27) 
V V 

The addition of Eqs (26) and (27) and the substitution of £q 

(21) into the resulting sum gives 

TT " 1 * r * "IT + * (28) 
v v 
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Th« aubatitutiea of th« d«flnition of N, Eq (IS), allow« Eq 

(28) to be rowritton aa 

^■-««'«-if- «•' 

In a given vernier family N ia a conatant and N «ay take 

on any poaitive integer. Aa a result, for a given faaily, Eq 

(29) show« that r «ay take on the valuea aa given in Eq (24) 

r - -1,0,1,2,3, ... (24) 

Fro« Eq (22) it «ay be aeen that the conaequence of r being 

able to take on an infinite nuaber of valuea ia that in a given 

vernier fa«ily there are an infinite nunber of «onotone aequen- 

tial verniera. 

Fro« the relationa that have been previoualy developed 

the following expresaiona for a given family of verniera «ay 

be written 

N« . N;v ' \    *   rNv > 1 (30) 

NN > N"  - N  s rN  ♦ 1 (31) av   v    v  * w 

where Il-p - N;p . N^ and \'%'  N^ 

25 



Th« prim* indicates a non-monotone sequential vernier and the 

double-prime indicates a monotone sequential vernier.  The in- 

trafamily relationship between the two types of verniers will 

now be developed by first assuming a relationship and then show« 

ing that such relationship is valid. 

An integral relationship is assumed to exist between N* 

and N"  such that sv 

N"  « t N* (32) sv      sv 

where t=-l, -2, -3, ... 

Substitution of Eq (32) into Eq (31) gives 

tN'  =N  +rN  +1 (33) sv   v ,   v 

If u £ r + 1 (34) 

then Eq (33) becomes 

N;v t - Nvu = + 1 (35) 

where u s 0fl«2,3t ... 
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Equation (35) is a linear indateminat« aquation with two 

unknowns, t and u.  The factors N*   and N determine a apecifie 

non-monotone sequential vernier within the given family.  Also, 

since u is a function of r, the two factora u and N determine 

a specific monotone sequential vernier.  Thua, if £q (35) has 

a solution such that u is a positive Integer, that solution 

proves the initial assumption, Eq (32); also, the solution 

gives the integral relationship t that exiats between the two 

types of verniers. 

A linear indeterminate (Diophantine) equation with two 

unknowns in the form 

ax + by s c (36) 

has a aolution in integers if and only if the greatest common 

divisor of a and b divides c.  If a and b are relatively prime 

(greatest common divisor of one) and x , y is a solution, then o  o 

there are other solutions which are given by 

x « x_ ♦ bm     y « y  - am (37) 
• o 

where m is an integer.     Proof of these statements may be found 

in any standard text on number theory (Ref 3:148). 
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Since N*  and N arc relatively prime« Eq (35) meets the 

above condition and has solutions of the form 

t+mN      usu-mN* (38) o    v o    sv 

The factor m may take on any integer value; hence, there will 

be some solution to Eq (35) where u is a positive integer*  As 

a result, for every non-monotone sequential vernier there will 

be a monotone sequential vernier that is directly related to 

it.  This relationship will be expressed by Eq (32) where the 

factor t will be determined by Eq (35). 

It should be noted that Eq (35) is actually two equations; 

thus, there will be at least two values of t that will provide 

integral relationships between the two types of vernier scales. 

One value of t will relate the folded (non-monotone sequential) 

vernier to the direct vernier; the other value of t will relate 

the folded vernier to the retrograde vernier. Figures 8 and 9 

illustrate these intrafamily relationships. 

A study of Figs. 8 and 9 from a geometric point of view 

reveals that in order to have a direct correlation between the 

two types of verniers it is necessary that 

N L" « It I ML1 ,„. v v   I J  v v 1391 
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This •quation ahowa that a folded vernier may  be conaidered aa 

being conatructed fron a Monotone aequentlal vernier. Thla 

conatruetlon la accoapllahed by dividing the Monotone aequentlal 

vernier Into \t\  aectlona of equal length and then atacklng the 

aectlona aa ahown In the Flga. 8 and 9. 

Smumary of Pertinent Reaulta»  The pertinent results fron 

the above developnent nay be aunnarlsed aa followa: 

1. To prevent ambiguity In the acale readings. It la 

necessary that N  and N be relatively prlne. 

2. The basic equation describing vernier operation la 

x a p 4- N 
•P 

N N ap v 

pN N + aN  + v ap v    v  (8) 
ap v 

where pt a, and v are the reapectlve readinga of the primary, 

aecoadary, and vernier acalea. 

3.  The coding of the vernier acale is deternlned by 

\vB] « ^n)Nv - ns] (18) 

where n *  0,1*2, ..., M  and 0 < v    £ N »»»    'v        — nv 
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4. To construct a monotone sequential vernier it is 

necessary to satisfy the equation 

N = rNv ; 1 (22) 

where r *  -1,0,1,2,3, ... 

(the use of the minus sign results in a direct vernier; the 

plus sign gives a retrograde vernier).  If Eq (22) is not satis- 

fied, the resulting device will be a folded (non-monotone 

sequential)vernier. 
L 

5. The least count of a vernier is given by   „ "„   . 
sp v 

6. For a given vernier family (same least count) a folded 

vernier is related to a monotone sequential vernier by 

N"  = t N« (32) sv     sv 

The factor t is an integer and is determined by the linear in- 

determinate equation 

N;v t - Nvu « I 1 (35) 

where u is a positive  integer. 
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III.  Re«idu« Nuaber Symtmmm 

As mentioned earlier, residue nuaber eyatens have char- 

aeteristiea that recoMaend the« for use as coaputer codes. 

The developaent of these novel nuaber systeas froa congruence 

theory will be briefly exaained in this chspter.  Unlike the 

preceding and succeeding chapters, this chapter presents 

aaterial that is readily available in other works.  The reaaon 

it is included in this paper ia to furnish soae background for 

the reader who is not faailiar with residue numbers.  It should 

be understood, however, that the aaterial presented here is very 

liaited in scope and ia developed for specific application in 

this paper.  In particular, the coaputer applications of these 

nuaber systeas will not be discussed.  The reader interested in 

this aspect of residue numbers is referred to the works of Alken 

and Seaon (Ref 1) and Garner, et al.  (Ref 2). 

Residue nuaber systeas include both fractional and integer 

nuaber systeas.  Though the fractional systeas allow greater 

flexibility with respect to the problea of scaling, residue 

nuaber systeas are more naturally interpreted aa integer systems. 

This paper will consider only the integer interpretation. 
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Congruences 

Though the idea of congruences goes far back into history, 

it was Gauss who formalized the concept and Introduced the 

terminology and symbolism that are in use today»  He defined 

two integers x and y as being congruent for the modulus m when 

their difference  x - y   is divisible by the integer m. 

Expressed in another way, if the two integers x and y have 

the same remainder after division by m, they are said to be 

congruent modulo m.  Gauss expressed this definition symboli- 

cally by 

x 3 y (mod m) (40) 

which is read:  x is congruent to y modulo m.  The following 

examples illustrate this concept: 

25 S 40 (mod 3) 25 « 16 (mod 3) 

25 S 1  (mod 3) 25 S -2 (mod 3) 

Many of the basic properties of congruences are the same 

as those of ordinary equalities, and the rules for operating 

with congruences in many ways resemble those used for combining 

equations.  However, because of more familiarity with them, most 
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people prefer to work with equations rather than congruence*. 

Aiken and Seaon have introduced a notation that satisfies this 

preference (Ref 1: Chap. I, p. 2).  Their notation is based on 

the fact that a congruence states that the equation 

X = nq -t- y (41) 

is valid for some value of q, where x, y, m, and q are integers. 

The factors q and y are the quotient and residue (reaainder) 

after division of x by m.  If q has such a value that 

0 ^ y < n,   then y is said to be the "least positive residue". 

Using this idea of least positive residue, Aiken and Semon have 

rewritten Eq (41) as 

X s 

where:    |x|   ■  least positive residue of x Mod m 

(42) 

W s  largest integer smaller than or equal 

to x/m 

It should be noted that |x|   is uniquely determined when x is 

given; however, the converse is not true since |x|_ represents 

all integers with residue | x|   after division of x by a.  This 
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relationship between x and |x| nay be expressed In the language 

of modern algebra as a many-to-one correspondence of the natural 

integers x to the least positive residues of x mod m. 

Chinese Remainder Theorem 

In order to have a coherent number system based on residue 

numbers it is necessary that x and |x(  be in one-to-one corres- m 

pondence«  There exists a theorem in number theory that gives 

the necessary and sufficient conditions for obtaining this corres- 

pondence for a finite set of natural integers.  The first known 

application of this theorem dates back to about the first century 

A.D. and is found in a Chinese arithmetic by Sun-Tse.  As a result, 

this theorem is often referred to as the Chinese Kemainder Theorem. 

The Chinese Remainder Theorem states that if a system of 

simultaneous congruences is given where the moduli m are rela- 

tively prime in pairs and 

M . "fT «i ^43) 
i=l   1 

then the set of n least positive residues lx|   uniquely 
mi 

determines the integer x in  0 <. x < M.  The solution for 

such a system of congruences is given by 
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• ^~ k1«i Ul^ (aod M) 

i«l 

(44) 

where A M (48) 

k ■  s 1 («od ■ ) 946) 

The proof of this theoren my be readily found in any standard 

text on nunber theory (Ref 3:244-246). 

With the notation of Aiken and Semon, the congruences of 

Eqs (44) and (46) may be transforaed into equalities.  Equation 

(44) becomes 

1-1, 
isl M 

(47) 

which may be written as 

i.l 

x)M (48) 

where W(x) is an integral function of x (Ref 3:86).  Equation 

(46) becoaes 

(49) 

i I». 
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Reeidue Numbers 

From the Chinese Remainder Theorem it is immediately 

apparent that a number system based on least positive residues 

can be constructed where 

(\x\m , \x\      , ,.., \x\     ) 
"l    m2 mn 

(50) 

However, in order to have a one-to-one correspondence of x to 

(\x\     , \x\     , •••« )xl  ) it is necessary that x be bounded. 
"l    "2 -n 

The bounds as stated In the Chinese Remainder Theorem are 

0 <c x ^M.  An example of such a number system where 

XV-MIX^, lxl3, \X\5)   is given in Fig. 10. 

For certain applications of residue numbers there appears 

to be an advantage in having a system where the bounds on x 

are such that they include numbers other than the least positive 

residue.  To accomplish this change in the range of x, it should 

be noted that in a residue number system  x and x + nm, where 

n is an integer, may be regarded as equivalent.  Thus, to obtain 

the desired range, it is only necessary to redefine W(x) so that 

K < x < M+K.  An example of a residue number system where 

x -*-»•( |x|2, lxl3, lx|5)   and  - 15 £ x -C 15 is given in Fig. 11. 
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X   » 

i«i 

-  (M+K)  W(x) k."    ■  1   (aod ■  ) 

18 k.   • 1   (aod 2) 
10 1^ s 1  (aod 3) 

6 k3 B 1  (aod 5) 

1 

1 

1 

x . 15 |x|2 + 10|x|3  * 6|xl5    - 30 W(x) 

■x - 2         «2 « 3           "3 " 5 

0 ^ x < 30 

X i«ra M, Ixl, W(x 1 x l«l. M3 W, W(x)| 

0 0 ~ 0 0 o 1 15 1 0 0 0 n 
1 1 1 1 16 0 1 1 01 
2 o 2 2 17 1 2 2 1 

3 1 0 3 IB 0 0 3 0 

4 0 1 4 19 1 1 4 1 

5 1 2 0 20 0 2 0 0 1 
6 0 0 1 o. ! 21 1 0 1 01 
7 1 1 2 22 0 1 2 0 ! 

8 0 2 3 23 1 2 3 1 | 

9 1 0 4 24 0 0 4 0 

10 0 1 0 0  j 25 1 1 0 0 1 
11 1 2 1 26 0 2 1 0 

12 0 0 2 1 27 1 0 2 0 1 

1 13 1 1  1 3 28 0 1 3 0 1 
1 14 0 1  2 4 1 29 1 2 4 1 1 

Fig.   10 

Healdue Nuaber Systea For 

0 < x < 30 
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x  = ki"llX -   (M+K)   W(x) km     5 1   (mod ■  ) 

15 kj  S  1 (mod 2) k.   » 1 

10 k2   =   1 (mod 3) k2  ^   1 

i    k     »   1 (mod 5) k     =   1 
•5 o 

x   r   ISlxL   +   10 4-   6 |x|5  -   30 W(x) 

1           m. = 2          m2 = 3          m  s 5 

-15 < x < 15 

X M2 lXl3 |x|5 W(x> 1 X ix|2 ^l. M5 W(x)| 

1  0 0 0 0 0   \ -15 1 0 0 

1 1 1 1 -14 0 1 1 

2 0 2 2 -13 1 2 2 

3 1 0 3 -12 0 0 3 

4 0 1 4 -11 1 1 4 

5 1 2 0 -10 0 2 0 

6 0 0 1 o  . 1 -9 1 0 1 

7 1 1 2 i  ! -8 0 1 2 

8 0 2 3 i -7 1 2 3 2 

i   9 1 0 4 -6 0 0 4 

10 0 1 0 o    1 -5 1 1 0 

11 1 2 1 -4 0 2 1 

12 0 0 2 o    ! -3 1 0 2 

1  13 1 1 3 -2 0 1 3 

1  14 1 0 1  2 4 1 -1 1 2 4  | 2 i 
Fig. 11 

Residue Number System For 

x<- ->.(jxL, IxLi 1 xl5) ,2, .^,3 

-15 < x < 15 
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IV,  Two Seal» R»«idu« VTnimrm 

The preceding chapters have presented a theory of conven- 

tional vernier devices and have briefly explained the concept 

of residue numbers.  It will now be shown that these seemingly 

unrelated subjects are, in fact, very closely related.  Also, 

it will be shown that a conventional vernier device, with slight 

modification, may be used to provide direct conversion from 

decimal numbers to residue numbers.  The author has chosen to 

refer to the modified device as a "residue vernier". 

The relationship between verniers and residue numbers will 

first be developed for the simplest case -  a vernier device 

consisting of two scales and a residue number system based on 

two moduli.  The theory resulting from this case will then be 

used as the framework for developing a general theory for multi- 

scale residue verniers. 

Definitions and Conditions 

For the development of the theory of conventional verniers 

it was necessary to consider the main scale as being made-up of 

two scales, a primary scale and a secondary scale.  Since the 

function of residue verniers is not to measure length, the view- 

point of two scales is not required.  In fact, it will be con- 

ceptually advantageous to consider the main scale aa being a 
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cyclic scale having exactly the sane characteristics as the 

vernier scale.  To decrease the possibility of confusion be- 

tween these different interpretations of the main scale, the 

main scale of the residue vernier will be referred to as the 

"staticM scale. 

In order to have a number system based on integers, it 

is essential that the relative displacement between the static 

and vernier scales be expressible in terms of integers.  To 

provide this relation a basic length different from that used 

in Chapter II is needed.  In that chapter L , the length of 

one primary scale division, was basic.  Prom £q (8b) it may 

be seen that if the basic length is considered to be the least 
L 

count,   „ £ ' , rather than L , then x will be an integer. 
N n p sp v r 

Therefore, the unit length based on the least count will be 

used for residue verniers. 

With the above conditions in mind, the folllowing defini- 

tions are given; 

N   s number of intervals on the static scale per static 

scale cycle 

N  s number of intervals on the vernier scale per vernier 

scale cycle 

N  a number of intervals on the static scale per vernier 

scale cycle 
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L ■ unit length (l«a«t count) 

L » length of • static scale interval 

L s length of a vernier scale interval 

Lg « length of a static scale cycle 

^y ■ length of a vernier scale cycle 

It should be noted that N and L. for a residue vernier 
S        9 

equal respectively N  and L for a conventional vernier.  Also, sp     p 

the unit length for a two-scale residue vernier equals the least 

count of a conventional vernier: 

It aust be eaphaaised that Eq (51) only holds for two-scale 

residue verniers.  Later development will show that a different 

relation is required for ■ulti-scale devices. 

The factors N , N  < L , and L have the sane Meanings v'  sv'  s      v 

as they had for conventional verniers.  Unlike conventional 

verniers, however« the principal requirement for the design 

of residue verniers is that N and N be relatively prime. 

This is an important change« and the reader should keep it in 

mind so that he may better understand the subsequent develop- 

ment. The reason for this change« though not apparent now« 

will become obvious latsr on. 
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Another innovation is baaed on the fact that the choice 

of the line to serve as the fiducial is not completely axiomatic. 

This is true because N  is stipulated to be an integer.  This 

stipulation results in the lines on the vernier scale a distance 

Ly apart having simultaneous coincidence (e.g., Figs. 5, 6, and 7), 

As a result, the line a distance Ly from the fiducial may as 

easily be coded sere as N .  Hence, the range for v as given 

by Eq (18) for conventional verniers may be changed to 

0 < vii < Nv (52) 

With this condition it may be seen that the two lines bounding 

a vernier scale cycle may perform the function of the fiducial 

equally well.  This concept has little practical value for 

conventional verniers; for residue verniers, however, it pro- 

vides a key to the understanding of their operation. 

In Fig. 12 three linear verniers are illustrated, each 

with two fiducials.  The properties of interest are the dis- 

tances between the beginning of a static scale cycle and the 

fiducials.  Examination of the three verniers shows that the 

two distances,   xL  and x*L ,   are not necessarily equal. 

In order for these distances to be equal, it is necessary that 

the length of the vernier scale cycle Ly and the length of the 
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•tatic scale cycle L- have an integral relationship such that 

tLV    ■ mLi 8 (53) 

where    a = 1,2,3, *..    and    b s 1,2,3, ••• 

For the development of the theory of two-scale residue 

verniers the factor b will be assumed to be one, so 

"S (54) 

In the subsequent developaent of the theory of multi-scale 

devices, b will be allowed to take on other values« 

From  the definitions given at the beginning of this section 

and from Eq (51), it may be seen that 

Ly  -  ML v v (55) 

L-  . N L 
S     s s 

(56) 

N L   « N L 
SV S       V V 

(57) 

These relations applied to Eq (54) give 

Nsv  " •«. (58) 
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Thus, whan a varniar davlca'a paramatara ara auch tbat £q (58) 

ia aatlafiad« tha two flduciala will giva equal raadlnga 

(x e x').  Aa will ba aaan later, thia equality ia a neceaaary 

condition for tha proper operation of reaidua verniera* 

In the above davelopnent there haa been no explicit 

limitation on the factor a other than it haa to be a poaitive 

integer.  There ia, however, an inplicit condition that a auat 

aatiafy which doea place liaitationa on the valuea it may  aaaune. 

Aa waa found in Chapter II for conventional verniera, it ia 

neceaaary for two-acale reaidue verniera that N and N  be 

relatively priae ao aa to prevent aabigulty of acale readinga. 

The atandard notation uaad to expreaa tha idea of relative 

priaeneaa ia 

(Nv, NST) ,1 (Sfl) 

which ia read}  the greataat cownon diviaor of N and N  ia 

one (Ref 4:47).  A vernier device whoae paraaietera aatiafy the 

conditiona of both £qa (98) and (59) haa 

(Hv, a Ns) » 1 (60) 

Thua, a may  no longer be any poaitive integer, but «ay aaaune 

only thoaa valuea which sake the product a. N  relatively 
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prine to N  (e.g., it m m  N , then £q (60) doesn't hold). 

In any standard text on nuaber theory it is shown that 

when a number is relatively prine to each of several numbers, 

then that nuaber is also relatively prime to the product of 

the several numbers (Ref 4:44).  As previously mentioned, 

residue verniers require that 

(Nv, Ns) m 1 (61) 

Given this relation, a sufficient condition for satisfying 

£q (60) is 

(Nv, a ) = 1 (62) 

Thus, if a vernier device's parameters ( a, N , and N  ) 

satisfy the conditions of £qs(61) and (62), this will be 

sufficient for £q (60) to be satisfied, and it follows from 

Eq (58) that   x x x'. 

With the above definitions and conditions, it is now 

possible to show the relationship between vernier devices 

and residue numbers. 

The Vernier Scale 

A distance equation based on the inside dimensions of 
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Fig. 15 aay b« written such that 

xL m hL > ML - nL (63) 
x    ■    •    v 

whereby th« definition of L , the factor x ia an integer. 

Equations (51), (54), (55), and (56) aay be appropriately 

combined to obtain 

La        N.NvLx 
Ls ' TT TT^ - NvLx (64) 

Ly     aL- 

v       v 

Substitution of £qs (64) and (65) into Eq (63) gives 

x « hNv ♦ (■» - naN^) (66) 

Taking the lead fro* Chapter II, the right-hand tera is 

defined as v , the numerical code given a line on the vernier 

acale.  Thus 

vn s wNy  - naN^ « q(n)Nv - anN (67) 

wherei n « 0,1,2, ..., N^ (67) 
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q(n) a ■ - an 

N . N_ - N. 

and fro« Bq (52)      0 < ▼ < N 

(69) 

(70) 

(52) 

With the above definition, Eq (66) beeomea 

v * x - H FU) n       v 
(71) 

«here 0 < T < N      h = P(x) *• n   v 

Fro» Chapter III it ia possible to «rite 

MN.. » x " V(x) 

«here 0 < UIN < 
N, 

(72) 

Coapariaon of Eqa (71) and (72) ahowa that v aatiafiea the 

conditiona for the leaat poaitive reaidue of x Mod Nv; hence. 

rn " WN. (73) 

The Static Scale 

An equivalent relation to that given in £q (73) mmj  be 

developed for the atatic acale by again writing a diatance 
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equation.  This equation, however, require* the use of the 

outside dimensions in Fig. 13.  Hence, 

x'L  = dL  + eL - fL (74) 
X     V     V     s 

Substitution of Eqs (64) and (65) into £q (74) gives 

x* s daN  ♦ eaN - fN (75) 
S        S      V 

Fron Fig. 13 it nay be seen that the factor f determines 

the number of static scale intervals from the beginning of the 

cycle much in the same way as n determines the number of vernier 

scale intervals.  However, there is one important difference. 

The factor f measures the intervals in a direction opposite to 

the direction in which n determines vernier scale intervals. 

From a practical viewpoint, it would be more convenient for 

the two coding sequences to code their respective scales in 

the same direction.  From Fig. 13 it may be seen that 

n'L  a N L  - fL (76) s   s s    s 

where n'L is the distance from the beginning of the static 

scale cycle measured in the same direction as n measures vernier 

scale intervals.  Hence, 
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f . N - n* (77) 

To acconpllsh the d«air«d change, £q (77) may be aubatituted 

into £q (75), which givea 

x» . daN^ ♦ (ea - Kv ♦ n«) N^ - n« (N^ - Nv)   (78) 

If G(x') m  da (79) G(: €*) * da 

)   . ea m Nv + n 

N  d N 
a 

. Nv 

q(n*) « ea - Nv + n (80) 

(70) 

then        x« « G(x»)N- ♦ Iqin')  N- - n^NJ (81) 

The aame argunenta uaed in Chapter II to develop the 

vernier acale coding aequence fro« a diatance equation «ay 

be applied to £q (81).  If a , ia defined aa the nunerical 

value given a atatic acale line n*  intervale fro» the be- 

ginning of the cycle« than 

{v"}  ■{<i(n,) "« -n,N]     (82) 

where n*     ■    •U9A«   •••,»   and    0 < an, < N^ 
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The substitution of £q   (82)   into £q   (81)   givos 

V   « ^   * N Gtx') <83) 

Thus, from residue number theory it may be seen that 

V " '
X,

'NS (84) 

The Two-Scale Residue Vernier 

It has been previously shown that for a vernier device 

with parameters which satisfy Eqs (61) and (62) the relation 

x s x*   will hold.  For such devices Eqs (71) and (73) and 

Eqs (83) and (84) show that when there is coincidence of scales 

x « |x|N  + NvF(x) (88) 

x . Ixl-  + NaG(x) (86) 

where  '
X
'M  

and  ^X^N   are the r**dings of the scales at 
v s 

that coincidence. 

The Chinese Remainder Theorem states that a set of equa- 

tions like Eqs (85) and (86) uniquely determine x in 

O ^ x 4NsNv  if N8 and N^ are relatively prime.  Thus, the 
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scale readings of a vernier device constructed with appropriate 

parameters and properly coded will at coincidence provide the 

least positive residues of  x  modulo N and modulo N ; 

x «e-MUL , lxl„ ) (87) 
Ns    Nv 

where 0 < x <, NJi^ 

The sufficient conditions and requirements for the design 

and construction of a two-scale residue vernier given a unit 

length L * the relation  b = 1,  and the parameters a« N , 

and N  are as follows: 

1. (N^, Nv) . 1 (61) 

2. (Nv, a ) > 1 (62) 

where       a ■ 1,2,3, ...   and  N  * aNs (58) 

3. hm m SyLx (64) 

4- Lv « «sv1« » «V-x (65) 

5. Jvl m    Sq(n) Nv - anhl (67) 
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where    n » 0,1*2, ..., N   and  0 < v < N i»»    'v — nv 

where    n' s 0,1,2, ..., N   and  0 < s . < N til •>     a — n'   s 

The firat two relations establish the sufficient conditions 

for the design of a two-scale residue vernier; the second two 

relations determine the physical structure of the device; and, 

the last two relations provide the coding sequences for the 

static and vernier scales.  All of the relations given above 

were developed with the assumption that the factor b in £q (53) 

was equal to one. 

In Figs. 14, 15, and 16 some examples of residue verniers 

are given where  a s 1, b s 1.   To better visualize the opera- 

tion of the devices shown in these figures, it is suggested 

that the reader transfer the vernier scale to the edge of a 

piece of paper.  The paper may then be slid along the static 

scale to obtain any desired coincidence.  A reference scale 

indicating integral multiples of the unit length is placed 

next to the static scale in each figure for the reader's con- 

venience.  Also, a residue number conversion table is given 

in Fig. 17 for easy reference. 
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In addition to the operation of rooidue vernier« there 

are aoae other precepta that «ay be obtained fro« theae figurea. 

First, when  a « 1 (b z 1),   the factor N deterninea the type 

of acale - direct« retrograde, or folded <• for residue verniers 

in the same Banner as it did for conventional verniers.  Second, 

the length of the static acale does not need to be greater than 

twice the length of the vernier acale in order to provide all 

the reaidue nimbera for which x is unique. 

Figure 18 presents a different conatructional approach for 

reaidue verniera.  In this figure the linear vernier illustrated 

in Fig. IS ia re-presented aa a circular residue vernier.  In 

order to visualise its operation the shaded circle in the center 

can be conaidered aa a diak Mounted on a flat plate in such a way 

that it ia free to rotate. Hence, the diak serves aa the vernier 

acale and the plate serves as the static scale.  Aa in Figa.  14, 

15, and 16, a acale indicating the integral miltiplea of the unit 

length ia placed next to the atatic acale for convenient reference. 

The main difference between the circular and linear devices,  be- 

sides the obvious physical difference, ia that the circular device 

requires a static acale only of a length equal to that of the 

vernier scale. 

The Multi-Cycle Residue Vernier 

When  a ^ 1  a slightly different configuration fron these 

ahown in Figs. 14, IS, 16, and 18 results.  In each of those 
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GIVEN PARAMETERS: 

L     =  1/8" N     « 5 
X 8 

X 

0 
N  = 6 v a x 1 

REQUIREMENTS; 

1. (Nst Nv) = (5, 6) = 1 

2. (Nv, a) = (5, 1) = 1 ; 

3. L = 6(1/8") > 3/4" 

4. Lv = 5(1/8") = 5/8" 

5. 

N  = 5  10 
B 

Nv  » 6        „N   =  -1 

n |q(n)Nv-anN V n q(n)    1 

1    0 1   6a(0)+0 0 0 

1 6q(l)+l 1 0      I 
2 6q(2)+2 2 0 

3 6a(3)+3 3 o   ! 
4 6a(4)+4         1 4 o     i 
5 1 1   6a(5)+5 5 0      i 
6 6q(6)+6 0 -1    1 

Ng  = 5         N  ss -1              | 

n q(rf)N -n* N 
•rf q(n') 

0 1   5q(0)+0 0 0      1 
1 1 5a(l)+l 1 0      | 

2 5q(2)+2 2 0      1 
i  3 1   5q(3)+3 3 0     1 
1' 4 5q(4)4.4 I   -4 0       | 

1   5 1   5q(5)+8 1    0 -1    1 

15—I 

20- 

25- 

30—I 

Ix| 

±_-L 

2  

j  

I  
-A 

o   Q 

i 

z  

5  

4  

2  

6 

»■id Direct Raaidu« Varnier 
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GIVEN PARAMETERS: 

Lx «  1/8" N     « 5 a - 1 x 

0- 
•■■ 

REQUIREMENTS! 
H      (Naf  Nv)   .   (5,   4)   x  1 

2. (Nv,   a)   >   (5,   1)   «  1   |   Nav  •  Nä 

3. L     -  4(1/8")   m  1/2" 

4.     Lv  .  5(1/8")   •  5/8" 

5. 
Nv.4 N  =  1 

n q(n)Nv-aiiN V n q(n) 

1    o I 4a(0)-0 0 0 

1 1   4a(l)-l 3 1         i 
i      2   ! !   4a(2)-2 2 1         1 

1      3   1 1   4a(3)-3 I 1         1 
1      4   | 1  «qUM 0 1         I 

N     * 5 • N « 1               1 

1      rf 1 1 qdrtN^-n'N V q(n' ) 1 

i      **] |    Sa(0)-0 0 o      1 
1       1  1 5a(l)-l 4 

1      2 1 1    5a(2)-2 3 

3 | 1    5a(3)-3 2 

1      4 1 1    5a(4)-4 1 

5 1           1 1    Sq(5)-5 0 

10 

15 — 

20- 

Fig.   15 
Rctrograd« Raaidu« Vernier 

x|5     W4 

3. 

A. 
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GIVEN  PARAMETERS: 

L     =   1/8" x 
N     =   5 N     =  7 

s v a  =  1 

x 

o- 

REQUIREHENTS; 

1. 

2. 

3. 

4. 

5. 

(V N   ) v (5,   7)   =   1 

6. 

(Nvf   a)   =   (5,   1)   =  1   ; 

L     =  7(1/8")   •  7/8" 
8 

Lv  . 5(1/8")   =  5/8" 

N sv 

N     =  7 
V 

N   . -2       1 

n 1 q(n)Nv-«nN V n q(n) 

0 7a(0)+0 0 0 

1 1    7a(l)+2 2 0    1 
2 7a(2)+4 4 0    | 

3 7q(3)+6 6 0    1 
i     4  ! 1    7a(4)+8 1 -1  1 

5   j i    7a(5)+10 3 -1 

!       6 I    7q(6)+12 5 -1   1 
7 j    7q(7)+14 0 -2    1 

N   =  5 N  » - 2 

j       n«   i qW)N  -n'N 1 
1 

Srf q(n«)  1 

0 5q(0)+0 0 0    1 

1       1    1 1   5a(l)+2 2 0   1 
i       2 I    5a(2)+4 4 0    | 

1      3   ! 1    5q(3)+6 1 -1   1 
4 1    Sa(4)+8 3 -1   1 

1       5 |    5q(5)*10 1   0 
-2    | 

IO- 

IS— 

E0- 

25— 

30— 

35—' 

Fig. 16 
Folded Residu* Vernier 

l«l8   l«l7 
Q .4.0 . 

U 
4 

4 
$ 

1 
i 

3 

3 

5 

0 ol 

2 

4 

1 

1 3 
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X 1      M5 M4 l«U M7    1 

1    0  1 1       0 
0 0 0 

1    1 1       1 1 1 1 
2 1       2 2 2 2 

i      3 1       3 3 3 3       1 
i      4     I 4 0 4 4 
1      8    1 1       0 1 5 5 
i     4   1 1       1 2 0 6 
1     f   1 2 3 i 0 
1     ö   | 1      3 0 2 1 
1    ö   | 1       4         | 1 3 2 
1   16   1 i     ö 2           1 4 3 
1   11   1 1          ' 3           ! 5 4 
1   12   | 1       2 "    0 0 5              1 
1   14    1 !       3         1 1 1 6 
1    14    1 4 2           ' 2 0              1 
1    15    | 0 3 3 1               1 
1   14   I 1 0 4 2 
1   17   1 !      2 1           ' 5 3 
i    18     1 i      3 2 0 4              1 
1   id   1 1       4 ■   3 1 s        i 
i    20     | 1     o 

■     ■« 

2 6            ! 
1    21     | 1       1 3 0           I 
1    22     | 1       2 4 1 
1   2*    1 3 5 2       i 
1    24     1 4 0 3              1 
1    25     i !      0 1 4              i 
1    26     | 1     i 2 5              ! 
1    27     1 1    2 3 6              1 
!    28     j 3 4 0         1 
1   £9    1 1       4 5 1 
1    30     1 ■■0 2 
1    31     | 1 3 
1    32     1 1       2 4 
1    33     1 3 5 
1    34     1 1       4 «             J 

rtf. 17 
Rssidue Number Conversion T*ble 
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17 \ 

16- 

15- 

14' 

13 / 

/• 

.-4- 

\ 

\Z / \ 8 

II I 
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Fig. 18 

Circular Retrograde 

Residue Vernier 

NB = 5   
Nv = 4    a ■ 1 
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figures it mmy  be •••n that the length of the vernier scale 

cycle is equal to the length of the reference scale which gives 

a complete cycle of the values of x.  Examples of devices for 

which  a s^ 1  are given in Figs. 19 and 20.  In these 

figures the length of the vernier scale cycle is equal to ^a 

times the length of the reference scale cycle.  Since it takes 

a reference scale cyclea to equal the length of one vernier 

scale cycle, devices where  a 9^ 1  are referred to as 

"multi-cycle" residue verniers. 

Examination of Pigs. 19 and 20 and of £q (67) reveals that 

the parameter N no longer completely determines the scale type 

for the vernier scale.  To obtain monotone code sequences on the 

vernier scale when  a «^ 1« Sq (22) of Chapter II must be 

modified to 

aN . rN * I 
v (88) 

As before, the minus sign gives a direct scale, and the plus 

sign gives a retrograde scale.  If the device parameters are 

such that Eq (88) doesn't hold, then the scale will be of the 

folded type.  It has been previously shown that the ratio of 

the scale lengths needed to provide uniqueness approaches two 

when  aal.  From these figures it may be seen that as  a 

increases this ratio of scale lengths approaches one.  Thus, if 
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GIVEN PARAMETERS: 

1/16" 

REQUIREMENTS; 

N N a = 3 

1. (No, NJ = (5, 4) = 1 

2. (N 

3. 

5. 

6. 

8' "V 

v, a) = (4,3)=!» N 

L = 4(l/16,•) « 1/4" 
av = aN_ =15 lft_ = 

4.  L  = 15 (l/ie") m   15/16" 

N     « 4 
V 

N  . 1           I 

n |q(n)Nv-anN V n q(n)     | 

0 1 4a(0)-0 0 0 

1   1 1    4a{l)-3 1 
1         1 

2   1 i    4q(2)-6 2 2         1 
1    3   | 1   4a(3)-9 3 3 

i    4   | i    4a(4)-12 0 4         ] 

N    > 5 
8 

N   » 1 

n*  1 qCnON^n'N | 8n' q(n')     1 

1    0 Sa(0)-0 0 0         | 

! i 1 1    5q(l)-l 4 0   ! 
1    2 1    5a(2)-2 3 0 

1    3   1 1   5a(3)-3 2 0         1 
4 1   5a(4)-4 1 i   0      1 

1    S   1 |    5q(5)-5 0 1      1 

X 

0- 

5- 

10- 

15- 

CO- 

Pig. 19 

Thr«e-Cycl« Residu« Vernier 

o « 0 

4. 

, J 
3 

2 

I    I 

z. 

* 

3 

2. 

3 

1 

o 

4 
3 

d 

2. 

1 

Ls  
4 

3 

2 

1 

u  



«■/M/fta-7 

IK.%'V
rfUf',' 

s 8 

i /9 

^ -12 
x-Vt-     „s 
^ 

-14 

^ 
-»5 

NNI-i ""       -16 
-17 

WSS^^^/^ 
-18 

y    x 
^19 

.^0 
N 

i^ ii  lo g  8 

rig. 20 

Circular Thrve-Cycle 

Residu« Vernier 

N^-5 N
T»

4 « = 3 
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Nv «  total number of vomier scale cycle« required to 

provide uniqueness 

N_ M    total number of static scale cycles required to 

provide uniqueness 

then for a linear residue vernier 

1< M
S
¥
S < 2 (89) 
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V.  MuUl-Scal« JMtU^ai vTPiT« 

The Chinese Remainder Theorea ■how* that the range in 

which x haa a one-to-one correapondence in a realdue number 

system ia determined by the product of the moduli, providing 

the moduli are relatively prime in paira.  Thua, to extend 

the range of thia correapondence it ia necessary either to 

increaae the value of the moduli or to increase the number 

of the moduli.  The previous development haa ahown that 

increaaing the value of the moduli of a number system asso- 

ciated with a reaidue vernier preaenta no theoretical problem! 

(there could be aome practical difficulties due to increaaing 

dimensions).  The following development will pertain to the 

latter method of increaaing the range of one-to-one correa- 

pondence, that of increaaing the number of moduli. 

To increaae the number of moduli of a number ayatem uaed 

with a residue vernier necessitatea the addition of acalea 

to the device.  Thia addition of acalea may be accompliahed 

in three waya:  the addition of static scales, the addition 

of vernier acalea, or the addition of both types of scalea. 

For convenience, each of theae three methoda »ill be treated 

separately» 
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Jlulti-Static Seal» Da vie • 

If aaveral two-acale reaidue varniera are conatruetad ao 

that they have equal unit lengtha and the aame vernier acale 

parameters, it ia apparent that their atatic acalea could be 

placed together and the device would function properly.  Thia 

concept of a nulti-atatic acale device being a composite struc- 

ture of several two-acale devicea will be uaed in the following 

development.  The advantage of thia approach ia that the deve- 

lopment problem ia reduced to only determining what, if any, 

constraints are placed on the two-scale device relationahipa 

aa a reault of attaching additional acalea. 

l>evice Farametera.  For a multi-atatic scale device with 

a common unit length and with one vernier scale, the factora 

L , Ly, L , and N have the aame meaning aa given them in Chapter 

IV.  The static scale parametera, however, require some modifica- 

tion since there are aeveral acalea to consider.  The change 

required ia the addition of a sub-subscript which identifies 

the pertinent acale, i.e., N  , (N  )., L  , and Ls  where 
•j   "V 3       ai i 

j K It — f ***i m• 

When the unit length ia common and each atatic scale operatei 

with a common vernier acale, it followa from £q (64) that 

N L . L  « L (90) v x   a^    a 
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Also,   it  fellow« fro« Eqa  (57)  and  (90)   that 

N L     N L    M 
/mi       \                      V V        V V   s N tnt\ 
U^i    '   — IT-     ^ (91) 

Thus, tho parameters N  and L  are comnon for all the static 

scales.  This fact could have also been derived fron practical 

considerations since a residue vernier requires coincidence of 

scales for proper operation. 

It was shown in Chapter IV that residue verniers require 

x s x*. Fro» Eq (93) of that chapter it say be seen that the 

condition needed to satisfy this requirement for multi-static 

scale devices is 

bL  = a.L (92) 

For multi-static scale devices b will again be assumed to equal 

one.  Hence, Eq (92) may be reduced to 

N,v  - a^ (93) 

where the implicit restrictions on a. result in 

(a^ , Nv) » 1 (94) 

If (N . N  ) . 1 (95) 
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then fro« the theorem in Chapter IV concerning relative priae 

nuabera a aufficient condition for aatisfying Eqa (93) and (94) 

la 

C S 
v 

"j " N (96) 
i 

m 
where S «  JT N- (97) 

j=l Bi 

and C ia defined aa a poaitive integer which aatiafiea 

(C , N ) » 1 (98) v*  v 

Substitution of Eq (96) into £q (95) gives 

N   = C S (99) 
SV     V 

Fro« Eqs (57), (90), and (99), it «ay be aeen that 

N L 
L  « —ml  * . C SL              (100) 
v      N v x 

Coding Sequencee«  The above relationa determine the con- 

strainta placed on the physical structure of a one vernier scale, 

multi-atatic acale reaidue vernier.  It ia now neceaaary to de- 

termine what changes, if any, need to be made to the coding ae- 

quencea developed for the two-scale device. 

Since the multi-scale device may be viewed aa a composite 

structure of several two-acale devicea, it is permissible to 

TO 
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the dl.tanc« «quatlon« daveloped in Chapter IV.  Hence, 

Kl^ . hL^ ♦ mhu  - nLv <«3) 

Subatltution of tqa (90) and (100) into Eq (63) givea 

x . hNv + (-Nv - nCvS) (WD 

Thua, fro- prior logic the coding aequence for the vernier 

scale is 

^-j . (q(n) Nv - nCvN] 

where:    n - 0.1.2 \ 0 ^ vn ^ Nv 

■ 

q(n) = • - nCv N « S - Nv 

(102) 

The other distance equation fro« Chapter IV gives 

x.Lx = d^ + e.Lv - f^ (^4) 

Substitution of Eqs (77). (90). and (lOO), into *| (74) give. 

..^^.[(-^L-H^^V-^.-V)  "<*> 
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(the prine has been removed froa n* since n and n' have the saae 

basic meaning).  Thus, the coding sequence  for the static scales 

becomes 

Is] - l^v v, -n/} (104) 

where:       n     s 0,1,2,   ...,  N 0 < s      ^ N 
3 ai ~   ai       Bi 

e C S n.S 
q(n.)   . -1JL- . Nv  + -ji- N  . S - Nv 

From  arguments similar to those used in Chapter IV, it follows 

from Eqs (101) and (102) and Eqs (103) and (104) that at a coin- 

cidence of scales for a multi-static scale residue vernier 

x «   Ixj,,  + NvP(x) 
V 

(105) 

x  >   |xL    + N    G  (x) (106) 

dC S 
ru,.fc         ajM.    s where : 

Hence, by the Chinese Remainder Theorem 

»•«-♦Oxl,, , |x|M ,lxlN  , ...» |x|N  )       (107) 

v     »i   »2 •m 

n 
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where 0 < x 4^ NVS 

Figure 21 gives some simple examples of one vernier scale, 

multi-static scale residue verniers.  It may be seen in these 

figures thst the parameter C determines the cyclic nature of 

the reference scale with respect to the vernier scale, just as 

the factor a did for two-scale devices.  Also, comparison of 

Pig. 21(a) and Fig. 21(b) indicates that from a practical view- 

point it may be advantageous to let N be the largest moduli 

of the number system used since this allows fewer intervals on 

the static scale. 

Multi-Vernier Scale Devices 

Device Parameters» In the preceding section it was conven- 

ient to consider the multi-static scale device as a marriage of 

several two-scale devices.  This concept will also be used for 

developing the relationships for a multi-vernier scale device. 

However, there is a modification that must be made.  In all the 

previous developments the integer N   has been used as the 

connecting link between the static and vernier scales.  For 

multi-vernier scale devices this parameter has little meaning 

since there are several vernier scales to be considered.  Hence, 

it is necessary to define a new parameter more suitable for one 

static scale, multi-vernier scale residue verniers.  This para- 

meter is 

74 
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(N  ) .  a nuabcr of intervals on the ith vernier scale 
vs j 

per static scale cycle 

where i s 1«2t •••« k 

(N  to N  )   also necessitates a change sv    sv 

This change in reference from the vernier scale cycle to 

the static scale cycle 

in the unit length.  In the developaent for a two-scale device the 

unit length was found to be given by 

L  a 
x N N s v 

(51) 

If the vernier and static scales were physically interchanged, 

then Eq (51) would become 

Sr 
N N s v 

(108) 

A moment's thought shows that for a two-scale device the change 

in the parameters from N  to N  is equivalent to the interchange 

of scales.  Hence, Eq (108) gives the unit length for a two-scale 

device when the static scale is used as a reference. 

When several vernier scales operate wfth one static scale 

and there ia a common unit length, it follows from Eq (108) that 

N L « L  = L 
S X    V      V 

(109) 
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Also,   it  follows  from the  definition of  (N     ).,  and £q   (109) va   i 

that 

(N    ) _-£_£-. _a_s_ =   N uio) 
sv   i L L vs vi 

Thus,   the parameters N       and L    are common  for  all   the  vernier f       ^ VS        V 

scales. 

From Eq (53) of Chapter IV, it may be seen that the con- 

dition necessary for a one-static scale, multi-vernier scale 

residue vernier to satisfy the requirement x = x* is 

b1Lv   .  aLs (111) 

For multi-vernier scale devices the convenient assumption is 

that  a s 1.  Hence, 

l^Ly    =   Lg (112) 

Substitution of Eq (110) into Eq (112) gives 

biVLv - Ns t-^ir*-) U13) 
i s 

which reduces to 

ht\  » Nv. (114> 

76 
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Just as th«r« was an iaplicit raatrietion on tha factor a, 

ao ia there a roatrietion on the valuea b May have.  Thia 

raatriction on b May bo dovolopod froM the condition required 

to prevent ambiguity of acale readings by logic very aimilar 

to that used for a.  For devicea using the atatic acale aa 

a reference, the condition required to prevent ambiguity ia 

(V Nv.) s 1 U15) 

The substitution of Eq(ll4) gives 

(N , b.N  ) m  1 (116) 
s'  i v. i 

If (N , N  ) « 1 (117) s   vi 

and (Ns, bi) » 1 (118) 

then from number theory (Chapter IV) Eq (116) ia satisfied. 

Since the residue number system used with a vernier device 

requires the condition expressed by £q (117)* a sufficient 

condition for satiafying £q (116) ia that b be relatively 

prime to N .  Hence, b. must not only satisfy Eq (114), but 

must also satisfy Eq (118).  A sufficient condition for meeting 
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the«« requireaents on b.   is 

C  V 
bi   = -JJÄ- (119) 

k 
where V S    fT    N (12o) 

i-1       vi 

and C  is defined as a positive integer which satisfies 

(C , N ) s 1 (121) s  s 

Substitution of Eq (119) into £q (114) gives 

N   = C V (122) vs   s 

From Eqs (108), (110), and (122) it may be seen that 

N  L 
L  ■ —V* V  ■ C VL (123) s     N      s x 

Coding Sequences.  The above expressions for the device 

parameters may now be applied to the basic two-scale device 

distance equations in order to develop the coding sequences. 

Hence, 

xL « hjL ♦ m.L - n.L (63) x   is   is   i v 
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Substitution of Eqa  (100)  and  (123)   niveo 

x a »»^v +  («i^V - n^) (124) 

As before, the right-hand tern provides the coding sequence« 

Thus, for the vernier scales 

W' ^n±) vni^ a25) 

where:   n^ * 0,1,2, .,., N^      0 6 ^ O ^ v  v N 
ri ni ^ N% 

V («.C -n.) 
'JTm     i 
N 

ri 

q(n.) =  B-=—i-     N . N_ - V 

The other distance equation gives 

x'L = dL + eL - fL (74) 
X     V     V     s 

The substitution of Eqs (77), (100), and (123) results in 

x« x dN^ ♦ Ue - CsV + C^N) N^ - nC^ (N^ - V)|   (126) 

where the prise has been dropped fro« n*.  Hence, for the ststic 

scale the coding sequence is 
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{8n] s (q(n) N8 " nC8
N} (127) 

where:      n » 0,1,2» ..., N-     
0 ^ 8n ^ Ns 

q{n) = e - CgV + C8n N = N  - V 

From prior logic it follows from Kqs (124) and (125) and 

Eqs (126) and (127) that at a coincidence of scales for a one 

static scale, multi-vernier scale residue vernier 

x = |x|N    *  Nv F.U) (128) 
Vi       i 

x = |x|N  *  N8 G(x) (129) 

K C V 
where F (x) =  ~ S        G(x) = d 

Vi 

Thus, by the Chinese Remainder Theorem 

UIN , UIN  , |x|N   UIN  )     U30) 
8      vl      v2 Vk 

where 0 < x < N^ 
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Firure 22 f^ivee some simple examples of multi-vernier scale 

residue verniers.  It should be noted that C also specifies the 

cyclic  nature of the reference scale, but in a different way 

than does C .  The parameter C  determine« the number of reference 
v v 

scale cycles per vernier scale cycle, whereas C  determines the s 

number of reference scale cycles per static scale cycle. 

Multi-Scale Devices 

Device Parameters.  Sufficient insight has now been achieved 

to allow the generalization of the residue vernier relationships 

for a multi-vernier scale, multi-static scale device.  A pre- 

requisite for the design of the multi-scale device is a common 

L  for all scales, a common L  for the vernier scales, and a x v 

common L  for the static scales.  These common lengths are needed 
s 

to insure the coincidence of all scales when the relative dis- 

placement is integral multiples of L . With this prerequisite 

it may be seen from Eqs (100) and (123) that 

Lx = -rf cT- a31) 

V 8 

Hence, L  = C SL (132) 
' V     V  X 

L  = C VL (133) s   ax 

However, before these expressions are complete it is necessary 

to determine if there has been any change in the constraints 
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placed on C and C aa a raault of attaching additional acaloa. 

The dataraination of the constraints on C and C requires 

the uae of two additional design prerequisites:  the relation 

x s x*  must be satiafied and the device parametera must be of 

a value that preventa ambiguity of acale readings.  FVom £q 

(53) it may be seen that the necessary condition for meeting 

the relation x s x*  is 

biV aiLs. 
(134) 

which may be rewritten aa 

b^N L  r a N L 
i v v     j • i (135) 

In prior development it haa been poasible to reduce this ex- 

pression by use of the parametera N  and N •  Examination of 

Figs. 21 and 22 reveals that for a multi-scale device theae 

parameters are no longer integere; therefore, they are of little 

uae in this generalised development*  The length factors, however, 

may be removed from £q (135) by the substitution of £qs (133 and 

(133). 

bjN C S i v^ v •/.jV (136) 

83 



GE/EE/63-7 

Figure 23 illustrates a vernier scale and a static scale 

of a multi-scale device.  It may be seen from this tigure that 

the condition necessary to prevent ambiguity of scale readings 

is 

(a N  , b N  ) . 1 
3 mi      * i 

(137) 

Since the Chinese Remainder Theorem requires that the moduli 

be relatively prime in pairs, it is necessary that 

(N  . NB ) = 1 
»    3 

(138) 

If a. s 
C S 
v 

i '   V 
(139) 

where (N  » C ) = 1 v.   v 
(140) 

then from Kqs (138) and (139) 

(N  , a.N  ) . 1 
Vi   J Sj 

(141) 

Also, if 
C V 

bi = "N— 
(142) 

where 
J  3 

(143) 
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*i\L' 

j—r 

b.N     L i v.   v 

Fig.  23 
Dimnaion« Of A Multi-Seal« 

R«aidue Vernier 

85 

——__ 



üi/üVes-? 

then from Eqs (141) and (143) 

<biNv.' VB^ = 1 (144) 

Hence, the expressions given in Eqs (139) and (142) satisfy £q 

(136), and Eqs (140) and (143) along with Eq (138) form a set 

of sufficient conditions for satisfying Eq (137). 

There is another set of sufficient conditions that may be 

developed.  If 

CsV b. =  „ (142) 
1    N'i 

where tc8» 
N
8 * s 1 

ü 

then from Eqs (138) and (145) 

(biNv.' N« ) * 1 

1        J 

Also, if aj =:  N 

where 

Bi 

lbiNv.' Cv) * 1 

(145) 

(146) 

C S 
v__ (139) 

(147) 
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then fro« Eqs (146) and (147) 

(b.N  . «.N  ) m  I {148) 
1 Vi   3   ai 

Thus, Eqs (145) and (147) along with Eq (138) alao for« a set 

of sufficient conditions for aatisfying Eq (137). 

With the use of £qs (139) and (142) the two sets of condi« 

tions iaposed on C and C may be written as 

(C , N  ) . 1      (C , C S) = 1 (149) 
w      * * IP      ▼ 

or (Cv, C^V) « I     (CB, N_ ) =1 (ISO) 
"j 

Coding Äecjuences. As previously mentioned, it is necessary 

within the seta of static and vernier scales that the interval 

length be common*  Because of this requirement, it is possible 

to consider a multi-static scale, multi-vernier scale device as 

being a combination of several two-scale residue verniers which 

have m  common unit length« Thus, no in the previous development, 

it is permissible to uso tho distance equations developed for the 

two scale device» Arom Chapter IV 

*L* « fc^l^ ♦ m^L
m "  ■«*v **3* 
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Substitution  of Kqs   (132)   and   (133)   into  Kq   (63)   sivea 

h.C V f V(ni.C -n.C )1 
(--^~) NV. +1—; 'v NV. - nicv (s-v) 

v^      i   L       vJ    J  i 
(151) 

Thus, 

and 

[v "I = Iq(n.) N   - n.C NV 
I nii   r  1   vi    1 v J 

UL   ♦ N   F.(x) ' 'N      v.  i v.     i x 

(152) 

(153) 

where:    n  = 0,1,2, . .. , Nv,      O < vn < Ny 

h C V 
FiU) . _ii-. N = S - V 

q(ni) 
V(«.C -n.C ) is  i v 

From Eq (88) it «ay be seen that Iv f wi 

quence when 

C N = r.N   ♦ 1 
v     4 vi 

will be a monotone se- 

(154) 

The second distance equation developed in Chapter IV may 

be written 

x'L . d.L  ♦ e.L - f L x    j v    j v    j e 
(74) 

Substitution of Eqa (77), (132), and (133) into Eq (74) gives 
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*-M,   ♦%»,««' a57> 

•4    J 

where i 

G.(x) « 

'<%   • • • « N 
•1 •*s<% 

"A8 
N  « S  -  V 

. '»V ., : v 
. c.s 

The requireaent for monotonicity of (•_ i "«y b« developed 
3 

by applying to Eq (156) the sane logic used in Chapter IIt 

Eqa (19) through (22).  The reaulting requirement ia 

C N - r4N  ^ 1 U58) 
a    i  •i 

The Chinese Reminder Theore« applied to the aota of equationa 

given by Eq (153) and (157) givea 

x*-».( |x|N  ,|xlH   1.1,  .I«!«  .1.1,   I.I,  ><».) 
v1     v2 vk     «!     »2 m 
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wher» 0 < x < VS 
*' ^ ^. . _t 

The preceding d«v*lopiM»nt has proven that a multi-vernier 

scale« ■ulti-atatic aeala davica« when properly designed, will 

at coincidence of acalea provide the residue number representa- 

tion of x*  A ainple example (in fact, it*a the simplest case) 

of such a vernier device is given in Fig. 24. 

There is one obvious point that is aufficiently important 

to rate a mention. This point la that the above generalised 

expressions reduce to the expressions developed esrlier for 

spscific caaes. 

•1 
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VI.  Summary of Pertinent Results 

The purpose of this paper, as stated in Chapter I, was to 

investigate the relationship between vernier devices and residue 

number systems.  This investigation ia now complete. 

In order to conduct the investigation, it was found necessary 

to first develop a theory for conventional verniers.  The results 

of this initial work are summarized at. the end of Chapter II* 

With a theory of conventional verniers developed, it was then 

possible to investigate the relationship between vernier devisee 

and residue uumbers.  The principal results of this investigation 

are the design requirements for the residue vernier« a device for 

converting numbers in decimal form into their residue equivalent 

and vice versa.  These results are sununarized below: 

1.  The moduli of the residue number system to be used deter- 

mine the device parameters N  and N  .  To prevent ambiguity in 
v.     »i 
i      J 

the number system, it is necessary that 

(N  , N  ) = 1 (138) v.   s. 
i    3 

where   i s 1,2, ..., k     and     j = 1*2, •••« m 

2.  Given the above relation, there are two sets of suffi- 

cient conditions for preventing ambiguity of scale readings. 

V. •'^Mj^VZf 
■  m  •           ■ 

■":-5 ■A    J • ■» 
_,.,-"■ •■is1-. 

. -.^-v 

/• 
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Tta«s« «r« 

CCV. Mv ) . I (C., Cv»)  . 1 

or 

whmrm 

(C„, C.V)  • 1 

^ICv 
8-I[S 1-1    ^i 

(149) 

(190) 

(07)   (120) 

1. 

and C    and C    datcmin« ttaa cyclic nature of tha reference eeal«. 

3.    The length of the intervale en the vernier and atatic 

acalea are given by 

.      ■  ■■ 

.J 
K - ^«'x L    - C.VL, (132)   (133) 

4. The ceding aequencea for the vernier ecalee are 

^.^(n^N^-n^] C152) 

..,•,■.■-■. 

«here   n£ . 0^1,2. . • •» "-      0 i \1 < "vj 

7- ■ 
J      '\        . 

^H*.^,. 

.-.^ 

8 - V 

5,r The coding aequencea for the etatic acalea are 

(iss) 

,' IB.. 

■••! ■% ik > -.rJi- 
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where     n. =0,1,2, ...,N       O <. a       ^ N 
i 3 3 

6. Given parameters  N  , N  , C , and C  which meet the v.   s.   v'      B 1    3 
conditions uiven in paragraphs 1 and 2, then a vernier device 

constructed and coded according to the requirements given in 

paragraphs 3, 4, and 5 will have scale readings at coincidence 

that 

x^-*.(|xlN     ,   lx|N     ,   ...,   |x|N     ,   |x|N     ,   |xJN     ,...,|x|        ^   ll89) 
Vl V2 Vk Sl S2 •. 

where 0 ^ x <1 VS 

7. If the device parameters are such that 

C N = r.N   ♦ 1 (154) 
v      IV. 

i 

then the code sequence for the particular vernier scale will be 

monotone.  For static scales if 

C N x rN    I   1 (158) 

then the particular static scale will have a monotone code 

sequence. 
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e« For  linear vernier«« the «IniauB ratio of otatie acalo 

length to vernier ecale length required to provide the coaploto 

range of x is 

(89) 
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VII« B»co—endatIon« for ffurthT Work 

During tte eours« of invwatigatlng the relationship between 

vernier devices und residue numbers, several area» requiring addi- 

tionnl work became apparent* Unfortunately, due to a time linita- 

tion the author was unable to pursue these further. The following 
- A^H?^-

- 
list presents some of these areas: 

■if . 

-^■j^m'-^wr'  **': ^n iMMdintely apparent application for the theory de- 

?v^^ veloped in this pnpor is for input-output translations.  It 

k^^^: % nppcw* that the vernier approach is applicable to both decimal r* 

' ^ :^^^v al>' analoft'convernion. Techniquea for performing these conver- 

-•,*'.;;•';8!^^;,4-niono using>thin'approach ahould be investigated. 

■'■■A^W%B,^mWt .2.t|It,haa-been ahown that for certain operations with 

... ,. rv i&ej^: reaidue numbers it is desirable to have a knowledge of the func- 
• -,• ;\-^«f,. ,   ■ • •.^... " 

:■» - tion W(x) - which was introduced in Chapter III (Ref It Chap III, 
" '■.■■■...•;:• }.,"'' .  c     . 

p. 8-16 and 3t86-00).  It appears that the relative displacement 

.. of the vernier scale is associated with this function.  This 

relationship should be investigated and developed. 
■  ; " ■ .vt' . 

3* The.theory developed in this paper has been necessarily 

tied to a mechanical device which has inherent disadvantages. 

An investigation could be performed to .determine the possibility 

of realising the vernier function electronically. One approach 

that may be possible would be to use coincidence of pulsee; the 

pulse frequency corresponding to the moduli of number system. 
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Some type of timm  delay aay poaaibly b« used to sinulat« rela- 

tiv* acale displacement. 

4. A direct extension of the work done in this paper 

would be an investigation of the application of residue verniers 

to residue nuaber arlttunetic. 

5. It was noted in Chapter II that vernier devices could 

be constructed so that the scale readings give x in either a 

fixed or a nixed radix systea.  This requires investigation to 

determine what* if any, constraints exist and what applications 

are possible« 

6. As indicated in Chapter VI, some of the conditions for 

designing a residue vernier are only sufficient.  Further work 

could be done to determine the necessary and sufficient condi- 

tions. 

»7 



GE/EE/63-7 

Bibliography 

1. Aiken, li. and W. Senon.  Advanced Digital Compufr Lottie» 
WAüC TH 59-472. Wright-Patterson APB, Ohio: Wright Air 
Development Center, USAP.  July 1059. 

2. Garner, H.L., et al.  Weaidu» Wuwber SytW for CoiPtttTa» 
ASD TR 61-483. Wright-Patteraon AFB, Ohioi    Aeronautical 
Systems Division, USAF, October, 1961. 

3. Lockheed Missiles and Space Co. Interii» Technical Report 
on Modular Arithmetic Technique».  ASP TR 61-472.  Wright- 
Patterson AFB, Ohio: Aeronautical Systems Division, USAP, 
December 1961. 

4. Ore, Oystein. Number Theory and Ita Hiotory.  Now Yorks 
McGraw-Hill Book Co., Inc., 1948. 



r 
(a/EK/*3~7 

Vita 

Richard Earl Evan« was born on 20 January 1929 in Shawnee. 

OklahoaM, the aon of Laurence Richard Evans and Mary Shelton 

fivana. After completing his work in 1946 at Capitol Hill High 

School, Oklahoma City, Oklahoma, he enlisted in the U.S. Navy. 

Upon hia discharge in 1948, he enrolled in the University of 

Oklahoma. With the advent of the Korean conflict, he enlisted 

in the U.S. Air Force in 1950. He served as an enlisted man 

until 1953, at which time he graduated from Officer Candidate 

School and was commissioned as a Lieutenant in the USAF» His 

military assignments prior to his coming to the Air Force 

Institute of Technology included the Air Training Command 

and the Headquarters Command and were primarily in the field 

of electronics. 

Permanent address:  608 South Court 
Visalia, California 

This thesis was typed by Mrs. Marie A. Evans. 



UNCLASSIFIED 

UNCLASSIFIED 


